SI Base Units The International System of Units (SI) defines seven base units from which all other units are derived. Quantity Unit Name Unit Symbol Length meter m Mass kilogram kg Time second s Electric Current ampere A Thermodynamic Temperature kelvin K Amount of Substance mole mol Luminous Intensity candela cd SI Prefixes Prefixes are used to denote decimal multiples and submultiples of SI units. Prefix Symbol Factor yotta Y $10^{24}$ zetta Z $10^{21}$ exa E $10^{18}$ peta P $10^{15}$ tera T $10^{12}$ giga G $10^9$ mega M $10^6$ kilo k $10^3$ hecto h $10^2$ deca da $10^1$ deci d $10^{-1}$ centi c $10^{-2}$ milli m $10^{-3}$ micro $\mu$ $10^{-6}$ nano n $10^{-9}$ pico p $10^{-12}$ femto f $10^{-15}$ atto a $10^{-18}$ zepto z $10^{-21}$ yocto y $10^{-24}$ SI Derived Units (Examples) Units derived from the base units, some with special names and symbols. Quantity Unit Name Unit Symbol In Base Units Area square meter $\text{m}^2$ $\text{m}^2$ Volume cubic meter $\text{m}^3$ $\text{m}^3$ Velocity meter per second $\text{m/s}$ $\text{m} \cdot \text{s}^{-1}$ Acceleration meter per second squared $\text{m/s}^2$ $\text{m} \cdot \text{s}^{-2}$ Force newton N $\text{kg} \cdot \text{m} \cdot \text{s}^{-2}$ Pressure pascal Pa $\text{kg} \cdot \text{m}^{-1} \cdot \text{s}^{-2}$ (or $\text{N/m}^2$) Energy, Work, Heat joule J $\text{kg} \cdot \text{m}^2 \cdot \text{s}^{-2}$ (or $\text{N} \cdot \text{m}$) Power watt W $\text{kg} \cdot \text{m}^2 \cdot \text{s}^{-3}$ (or $\text{J/s}$) Frequency hertz Hz $\text{s}^{-1}$ Electric Charge coulomb C $\text{A} \cdot \text{s}$ Electric Potential volt V $\text{kg} \cdot \text{m}^2 \cdot \text{s}^{-3} \cdot \text{A}^{-1}$ (or $\text{J/C}$) Resistance ohm $\Omega$ $\text{kg} \cdot \text{m}^2 \cdot \text{s}^{-3} \cdot \text{A}^{-2}$ (or $\text{V/A}$) Measurement Principles Accuracy vs. Precision Accuracy: How close a measurement is to the true value. Precision: How close repeated measurements are to each other. Significant Figures Non-zero digits are always significant. Zeros between non-zero digits are significant (e.g., $1005 \text{ m}$ has 4 sig figs). Leading zeros are not significant (e.g., $0.0025 \text{ kg}$ has 2 sig figs). Trailing zeros are significant only if the number contains a decimal point (e.g., $100. \text{ g}$ has 3 sig figs; $100 \text{ g}$ has 1 sig fig). In scientific notation, all digits are significant (e.g., $1.23 \times 10^4 \text{ s}$ has 3 sig figs). Rules for Calculations with Significant Figures Addition/Subtraction: The result should have the same number of decimal places as the measurement with the fewest decimal places. Example: $12.11 \text{ cm} + 18.0 \text{ cm} + 1.013 \text{ cm} = 31.123 \text{ cm} \rightarrow 31.1 \text{ cm}$ Multiplication/Division: The result should have the same number of significant figures as the measurement with the fewest significant figures. Example: $2.5 \text{ m} \times 3.42 \text{ m} = 8.55 \text{ m}^2 \rightarrow 8.6 \text{ m}^2$ Uncertainty and Error Absolute Uncertainty: The range within which the true value of the measurement is expected to lie. Often expressed as $\pm \Delta x$. Relative Uncertainty: The ratio of the absolute uncertainty to the measured value, often expressed as a percentage. Formula: $\text{Relative Uncertainty} = \frac{\Delta x}{x} \times 100\%$ Propagation of Uncertainty: Addition/Subtraction: If $Q = x + y$ or $Q = x - y$, then $\Delta Q = \sqrt{(\Delta x)^2 + (\Delta y)^2}$ (for independent uncertainties). Multiplication/Division: If $Q = x \cdot y$ or $Q = x / y$, then $\frac{\Delta Q}{Q} = \sqrt{\left(\frac{\Delta x}{x}\right)^2 + \left(\frac{\Delta y}{y}\right)^2}$. Powers: If $Q = x^n$, then $\frac{\Delta Q}{Q} = |n| \frac{\Delta x}{x}$. Types of Errors: Random Error: Unpredictable fluctuations in measurements, affecting precision. Reduced by taking multiple readings. Systematic Error: Consistent, repeatable error in all measurements due to faulty equipment or experimental design, affecting accuracy. Unit Conversions Use conversion factors to change between units. A conversion factor is a ratio equal to 1. Example: Convert $50 \text{ km/h}$ to $\text{m/s}$. $$ 50 \frac{\text{km}}{\text{h}} \times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{1 \text{ h}}{3600 \text{ s}} = 13.89 \frac{\text{m}}{\text{s}} $$ Common Physical Constants Constant Symbol Value (approx.) Unit Speed of light in vacuum $c$ $2.998 \times 10^8$ $\text{m/s}$ Elementary charge $e$ $1.602 \times 10^{-19}$ C Planck constant $h$ $6.626 \times 10^{-34}$ $\text{J} \cdot \text{s}$ Gravitational constant $G$ $6.674 \times 10^{-11}$ $\text{N} \cdot \text{m}^2 \cdot \text{kg}^{-2}$ Avogadro constant $N_A$ $6.022 \times 10^{23}$ $\text{mol}^{-1}$ Boltzmann constant $k_B$ $1.381 \times 10^{-23}$ $\text{J/K}$ Electron mass $m_e$ $9.109 \times 10^{-31}$ kg Proton mass $m_p$ $1.673 \times 10^{-27}$ kg